两种开孔的高填充率 GRIN 平面微透镜阵列 离子扩散特性

蒋小平 刘德森

(西南大学物理科学与技术学院,重庆 400715)

摘要采用光刻离子交换法制作六角形孔径的高填充率梯度折射率(GRIN)平面微透镜阵列可有六角形和圆形两种开孔方式。通过设计两种孔径的六角形排列模板,采用光刻离子交换法并分时段取样,分别对形成高填充率GRIN平面微透镜阵列的两种开孔方式的离子扩散特性进行测试和分析,得到了这两种开孔方式在r方向和z方向的离子扩散和开孔表面凸起的特性,为制作不同孔径大小与开孔间距的高填充率GRIN平面微透镜阵列提供了工艺和理论参考。

关键词 集成光学;平面微透镜阵列;离子扩散;填充率;六角形孔径

中图分类号 O435.1 文献标识码 A doi: 10.3788/AOS201333.0413001

Ion-Diffusion Characteristics of Two Kinds of Planar GRIN Microlens Arrays with High Fill-Factor and Different Aperture

Jiang Xiaoping Liu Desen

(School of Physical Science and Technology, Southwest University, Chongqing 400715, China)

Abstract There are two types of apertures, hexagonal and circular, to fabricate planar GRIN microlens arrays with hexagonal aperture and high fill factor by ion-exchange and photolithography. By the designed photomasks of hexagonal and circular aperture, ion-exchange, photolithography and time sampling, the characteristics of ion-diffusion during fabricating the two types of planar GRIN microlens arrays with high fill factor are tested and analyzed. Then we obtain the features of ion-diffusion in such two types of apertures, which are helpful to fabricate planar GRIN microlens arrays with high fill factor when the aperture size and aperture spacing are given. **Key words** integrated optics; planar microlens array; ion-diffusion; fill-factor; hexagonal aperture **OCIS codes** 130.3120; 220.3630; 220.4610

1 引 言

微透镜阵列是现代光学向微型化、集成化发展 的重要光子器件之一,此阵列的填充率则是影响其 光信息、光能量接收效率的重要因素^[1,2]。近年来, 国内外采用玻璃、石英、硅和聚合物等材料,用激光、 刻蚀、模压、热熔和光刻离子交换等方法制作了各种 具有不同排列方式和光学特性的高填充率微透镜阵 列,极大地推动了现代光学向微纳光子学的发 展^[3~8]。其中,光刻离子交换法是一种操作相对简 单、对设备要求不高的光学微加工工艺,采用此工艺 制作的高填充率梯度折射率(GRIN)微透镜具有光 学均匀性好、光信息收集能力强、微透镜元掩埋于基 片内等突出特点^[8~13]。

采用光刻离子交换法制作 GRIN 微透镜阵列 时,要达到高填充率,掩模开孔的排列方式主要有正 方形排列和六角形排列两种。考虑到像差的影响, 六角形排列时,经离子交换形成的紧密排列的平面 微透镜阵列孔径通常也是六角形的,其像差比正方 形排列而形成正方形孔径的微透镜阵列的小,本文 仅研究六角形排列的情况。而理论分析和实验测试 表明,在开孔阵列为六角形排列时,采用圆形和六角 形开孔均能制作出高填充率的六角形孔径 GRIN

收稿日期: 2012-10-15; 收到修改稿日期: 2012-12-02

基金项目:国家自然科学基金(60978046)、中央高校基本科研业务费专项基金(XDJK2011C044)和西南大学博士基金(SWU111023)资助课题。

作者简介:蒋小平(1973—),男,博士,讲师,主要从事微纳光子学及器件等方面的研究。E-mail: jungxp@163.com

平面微透镜阵列,但二者的离子扩散特性却有显著的差异^[8~13],本文主要对此进行研究。

2 离子扩散分析

2.1 开孔式离子交换的离子浓度分布

当开孔尺寸比离子扩散深度小得多时,可近似 认为是点源扩散。离子交换时,熔盐中的 Tl⁺ 与玻 璃中的 Na⁺发生互扩散。设 C 为玻璃内 Tl⁺ 的质 量浓度, C_0 为扩散界面处 Tl⁺ 的质量浓度,a 为开孔 半径,r,z 为柱坐标,则在柱坐标系下通过求解扩散 方程可得到扩散后的离子浓度分布为^[14]

 $C(r,z) = \frac{2C_0}{\pi} \arcsin \frac{2a}{\sqrt{(r-a)^2 + z^2} + \sqrt{(r+a)^2 + z^2}}.(1)$

由(1)式可看出,Tl⁺可通过开孔向r、z两个方向扩 散,而且Tl⁺离子分布关于z轴对称,等浓度面为以 开孔中心为对称中心的旋转椭球面;在开孔表面附 近,z值最小,而r值最大。因此,当在基片表面为 完全相同的开孔阵列时,相邻开孔的离子扩散在表 面附近会最先相遇。

2.2 圆形开孔阵列的离子扩散

如图 1(c)、(d)和(e)所示,在仅有两个圆形开 孔情况下,若开孔中心距与开孔孔径相比不太大,经 过一定时间的离子扩散,相邻开孔 a 和 b 附近的扩 散区域就会相遇。由于开孔尺寸、离子交换条件完 全一致,根据扩散动力学理论可知,沿垂直干开孔平 面的方向观察,在离子交换区域相遇处将逐渐形成 一条直线边界 OO', 直线两边的离子浓度相等, 且浓 度分布关于直线 OO'对称,如图 1(c)和(d)所示。 由于离子互扩散的动力来源于浓度差,因此在紧靠 直线的两侧不会有互扩散发生,即不会出现图 1(b) 中的情形(相遇后两边的离子彼此发生互扩散而边 界消失)。当扩散继续进行时,两个开孔之间最新相 遇的点仍位于直线 OO'上,共同的边界进一步延伸。 而在边界两边的区域,由于正常扩散受到前方相遇 扩散区域的阻碍,其折射率分布不再遵循单一开孔 时的圆对称关系,只是随扩散的继续进入玻璃的离 子浓度会逐渐变大。当有三个呈正三角形排列的圆 形开孔时,由同样的分析可知,经一定时间的扩散, 在两两相遇处均会形成直线边界,而且任意两条直 线间夹角为120°,如图1(f)所示。如果开孔阵列中 任意相邻三个开孔都满足正三角形排列(此时任何 一个开孔周围的六个开孔都呈正六角形排列),则经 历足够长时间的扩散,将形成如图 1(g)所示的高填 充率的平面微透镜阵列。

图 1 圆形开孔阵列的离子扩散进程分析示意图 Fig. 1 Sketch of analyzing ion-diffusion process for circular aperture arrays

2.3 六角形开孔阵列的离子扩散

当开孔形状为六角形时,离子交换开始后,离子扩散的初始边界为六角形。当离子交换进行一段时间后,在开孔的角部附近,离子扩散区域边界变得弯曲并逼近圆形,但仍保持一定程度的六角形轮廓,如图 2(a)和(b)所示。当离子交换时间较长时,由于相邻开孔交换区域相遇,边界将形成规则的六角形,并呈现出紧密排列的高填充率平面微透镜阵列表面,如图 2(c)所示。

3 实验与测试

经理论分析、计算和初步实验,设计了如表1所 示的H01和C01型两种参数的模板,其中C01的圆 形正好为H01的六角形的内切圆。基片选用Na⁺ 含量较高的特殊光学玻璃并抛光至普通表面光洁度 要求,基片为方形,边长25mm,厚度2mm。经在 基片表面镀钛掩模、匀胶、曝光、显影、开孔钛蚀刻和 去胶等工艺流程,可得到如图3所示的有六角形和 圆形开孔阵列的基片(放大 15 倍)。离子交换温度 为 460 ℃,离子交换熔盐为 Tl₂SO₄ 与 ZnSO₄ 的混 合盐,其质量比为 1:1。分别在 4、24、72 h 时取样, 最后的 H01 和 C01 型基片取样时间分别为 168 h 和 240 h。

		图 2	六角形开	孔的六角	角形	排列时离	子扩散进	程示意	图		
Fig. 2	Diagrams	of ior	n-diffusion	process	for	hexagonal	aperture	arrays	arranged	in	hexagon

	表 1	H01和C01	型模板设计	参数			
Table 1	Parameters	s of designed	photomask	typed	H01	and	C01

	A	A	Side length or	A	Center distance /mm	
	Aperture	Arrangement	diameter /mm	Aperture spacing / mm		
H01	Hexagonal	Hexagon	0.173	0.66	0.96	
C01	Circular	Hexagon	0.150	0.66	0.96	

图 3 (a)六角形和(b)圆形开孔基片照片

Fig. 3 Photographs of substrate with (a) hexagonal and (b) circular aperture array

最后对所取样品分别在平行于基片表面的 r 方向、垂直于基片表面的 z 方向的离子扩散和开孔表面凸起(如图 4 所示)进行测试和分析。

3.1 r方向的扩散特性测试与分析

采用自带白色冷光源的 CCD 读数显微镜,可从

图 4 微透镜元的 r、z 方向及开孔表面凸起 Δh 示意图 Fig. 4 Diagram of direction of r, z and the swelled structure of a GRIN microlens 基片无钛膜一面拍摄到沿 r 方向的扩散区域平面照 片,如图 5 所示(放大 8 倍)。

由图 5 可看出,离子交换区域充满基片全部表 面时,圆形比六角形所需时间明显更长;不论六角形 还是圆形开孔(每个离子扩散区域中心颜色突出部 分),经历足够长时间的离子扩散,相遇的边界均形 成较为清晰的六角形;离子交换后,开孔形状无明显 变形。利用面积计算软件计算得出两种微透镜阵列 的最后填充率约为 95%(去除相遇边界附近的深色 区域)。

表 2 为 H01 和 C01 型平面微透镜阵列 r 方向 离子扩散特性参数测试数据,由此分析可知:H01 和 C01 两种形状的开孔离子扩散r 方向的平均扩散 速率(离子扩散深度与扩散时间的比值)均随时间增 加而显著减小;圆形开孔的 r 方向有效扩散系数

(e) C01-4 h

D_{eff}(离子扩散深度的平方与扩散时间的比值^[14])小

(f) C01-24 h

(g) C01–72 h

(h) C01-240 h

的 r 方向平均扩散速率大,即六角形开孔 r 方向扩

图 5 (a),(b),(c),(d)六角形和(e),(f),(g),(h)圆形开孔时r方向离子扩散进程照片

Fig. 5 Photographs of ion-diffusion process in direction of r for (a), (b), (c), (d) hexagonal and

(e),(f),(g),(h) circular aperture arrays

表 2 H01 和 C01 型微透镜阵列 r 方向离子扩散特性参数测试数据

Table 2 Testing data of ion-diffusion parameters for microlens arrays of type H01 and C01 in direction of r

	H01			C01				
Ion-exchange time /h	4	24	72	168	4	24	72	240
Diffusion depth /mm	0.066	0.221	0.257	0.376	0.080	0.180	0.243	0.340
Average diffusion rate $\overline{v}_{Dr}/(10^{-3} \ \mu m/s)$	4.583	2.559	0.991	0.622	5.569	2.085	0.937	0.394
Effective diffusion coefficient $D_{\rm eff}/(10^{-13}{ m m}^2{ m /s})$		3.391			2.959			

3.2 z方向的扩散特性测试与分析

将经离子交换后的阵列沿透镜光轴切开并抛 光,可在 CCD 读数显微镜下观察到如图 6 所示的离 子交换开孔处z方向的扩散区域(放大10倍)。

从图 6 可以看出:当离子交换 4 h 后,沿 z 方向 的离子交换区域呈扁平椭球状,然后离子扩散的深 度逐渐增加,离子交换区域椭圆度逐渐减小:当交换 至168 h,离子交换区域接近半球形。

图 6 (a),(b),(c),(d)六角形和(e),(f),(g),(h)圆形开孔时 z 方向离子扩散进程照片 Fig. 6 Photographs of ion-diffusion process in direction of z for (a), (b), (c), (d) hexagonal and

(e),(f),(g),(h) circular aperture arrays

离子扩散z方向的平均扩散速率均随时间增加而显 著减小;圆形开孔的 z 方向有效扩散系数 D_{eff}大于 六角形开孔(与方向的相反);两种开孔的z方向有

表 3 为 H01 和 C01 型六角形孔径 GRIN 平面 微透镜阵列 z 方向离子扩散特性参数测试数据。分 析表中数据可以得知:H01 和 C01 两种形状的开孔

效扩散系数均大于相应的 r 方向有效扩散系数;总体上,六角形开孔比相应内切圆开孔的方向平均扩

散速率小(与r方向的相反)。

表 3 H02 和 C01 型微透镜阵列 z 方向离子扩散特性参数测试数据

Table 3 Testing data of ion-diffusion parameters microlens arrays of type H01 and C01 in direction of z

		H	I01			С	01	
Ion-exchange time /h	4	24	72	168	4	24	72	240
Diffusion depth /mm	0.086	0.283	0.369	0.538	0.119	0.273	0.368	0.503
Average diffusion rate $\bar{v}_{\mathrm{Dr}}/(10^{-3}~\mu\mathrm{m/s})$	5.972	3.271	1.423	0.890	8.229	3.155	1.418	0.583
Effective diffusion coefficient $D_{\rm eff}/(10^{-13}{ m m}^2/{ m s})$		6.	103			6.0	625	
3.3 开孔表面凸起		え	紧密相关	连的 GR	IN 微透	镜一起	形成一く	个复合透
用光刻离子交换法制作平面微透镜阵	列时,开	· 镜	[12,13]	图5中,	从 24 h 🖯	开始,因;	大半径的	的铊离子

孔表面会因为互扩散离子对的半径、电极化率差异 而产生体积膨胀,从而形成一个折射率均匀的微凸 透镜,它可以改善平面微透镜阵列的成像性能,和与 定家雷相连的 GKIN 假透镜一起形成一千发音透镜^[12,13]。图 5 中,从 24 h 开始,因大半径的铊离子 置换了玻璃中的小半径钠离子,在开孔表面附近逐 渐形成一个球缺状的表面凸起。表 4 为经 CCD 读 数显微镜测量的表面凸起高度数据。

表 4 H02 和 C01 型平面微透镜阵列开孔表面凸起高度测量数据

Table 4 Testing data of bulge height on the surface of planar microlens of type H01 and C01

Ion-exchange time /h	4	24	72	168(240)
Height of H02's surface /mm	0.015	0.0304	0.032	0.029
Height of C01' surface /mm	0.0208	0.0326	0.042	0.030

从表4中可以看出:随着离子交换时间的增加, 开孔表面凸起高度增大;圆形开孔比六角形开孔表面 凸起更为明显;当离子交换过久时,表面凸起反而变 得不明显。在离子交换168 h(圆形开孔为240 h)后, 测量的相对凸起高度反而减小,这主要是因为:离子 交换时间过长时,开孔附近的玻璃膨胀也较明显,从 而降低了开孔表面凸起的相对高度。这种时间过长 的离子交换会使形成的复合透镜质量下降,因而应 根据设计的模板合理选择离子交换时间,以提高复 合透镜的光学性能。

3.4 两种微透镜阵列的成像

对完成离子交换的两种微透镜阵列表面(镀钛 掩膜的一面)进行轻度抛光,去除表面杂质后,在显 微镜下可观察到它们对目标物字母"A"所成的倒 立实像,如图7所示。从图7可以看出,六角形开孔 的微透镜阵列成像质量较好,而圆形开孔的微透镜 阵列成像质量很差。因此,要制作成像质量好的高 填充率 GRIN 微透镜阵列,应选择六角形开孔的 模板。

图 7 (a)六角形和(b)圆形开孔的 GRIN 高填充率微透镜阵列成像 Fig. 7 Imaging of high fill-factor GRIN microlens with (a) hexagonal and (b) circular aperture

4 结 论

光刻离子交换制作高填充率 GRIN 平面微透 镜阵列可采用圆形或六角形开孔的六角形排列方 式,但二者的离子扩散特性有别。根据测试与分析 可知,要制作高填充率 GRIN 平面微透镜阵列,若 开孔间距比开孔尺寸大得多,两种开孔方式差异较 小(因离子交换时间足够长时,均可视为点源扩散), 但高填充率实现均较困难(因离子交换时间太长且 会影响透镜成像质量,而且离子交换时间太长离子 进一步扩散会变得非常困难);若开孔间距与开孔尺 寸(直径或对边距)相当时,六角形开孔优于圆形开 孔,并可在较短时间内可达到高填充率且得到较好 质量的复合透镜。

参考文献

- 1 Zheng Jianzhou, Yu Qingxu, Lu Yongjun *et al.*. Improved lens arrays optica system with controllable focus width for uniform irradiation[J]. *Chinese J. Lasers*, 2007, **34**(3): 331~336 郑建洲, 于清旭, 卢永军等. 焦斑可调的透镜阵列均匀辐照光学 系统[J]. 中国激光, 2007, **34**(3): 331~336
- 2 Zhou Ping, Lu Wei, Lin Yuxiang *et al.*. Fly eye lens array used in liquid crystal projection display with high light efficiency[J]. *Acta Optica Sinica*, 2004, **24**(5): 587~591

周 平,陆 巍,林宇翔等.复眼透镜提高液晶投影照明系统的 能量利用率[J]. 光学学报,2004,**24**(5):587~591

3 Du Chunlei, Lin Dajian, Feng Boru *et al.*. Microlens array fabrication by using laser direct lithography system [J]. *Acta Optica Sinica*, 1996, **16**(8): 1194~1196 杜春雷,林大键,冯伯儒等.激光直接光刻制作微透镜列阵的方

法研究 [J]. 光学学报, 1996, 16(8): 1194~1196

4 Zhang Xinyu, Tang Qingle, Zhang Zhi et al.. Concave refractive microlens arrays fabricated by ion beam etching[J]. Acta Optica Sinica, 2001, 21(4): 485~490 张新宇,汤庆乐,张 智等. 凹折射微透镜阵列的离子束刻蚀制

作[J]. 光学学报, 2001, 21(4): 485~490

- 5 Daniela Radtke, Jacques Duparr', Uwe D. Zeitner *et al.*. Laser lithographic fabrication and characterization of a spherical artificial compound eye [J]. *Opt. Express*, 2007, **15**(6): 3067~3077
- 6 Daniel M. Hartmann, Osman Kibar, Sadik C. Esener.

Characterization of a polymer microlens fabricated by use of the hydrophobic effect[J]. *Opt. Lett.*, 2000, **25**(13): 975~977

- 7 M. Fritze, M. B. Stern, P. W. Wyatt. Laser-fabricated glass microlens arrays[J]. Opt. Lett., 1998, 23(2): 141~143
- 8 Liu Desen, Gao Yingjun, Zhu Chuangui *et al.*. Fabrication and characterization of gradient index planar microlens array [J]. *High Technol. Lett.*, 1996, 6(4): 35~39 刘德森,高应俊,朱传贵等. 自聚焦平面微透镜阵列的制作及其基本特性[J]. 高技术通讯, 1996, 6(4): 35~39
- 9 Jiang Xiaoping, Liu Desen. Fabrication of gradient refractive index hexagonal aperture planar microlens array based on convex substrate[J]. Acta Optica Sinica, 2010, 30(6): 1792~1795 蒋小平,刘德森.变折射率球面六角形孔径平面微透镜阵列[J]. 光学学报, 2010, 30(6): 1792~1795
- 10 Jiang Xiaoping, Liu Desen, Zhang Fengjun *et al.*. A buried microlens array simulated compound eye[J]. J. Optoelectronics · Laser, 2011, 22(8): 1143~1146 蒋小平, 刘德森, 张凤军 等. 一种掩埋式复眼微透镜阵列[J]. 光电子·激光, 2011, 22(8): 1143~1146
- 11 Zhu Chuangui, Liu Desen, Xue Mingqiu *et al.*. Analysis on the swelled structre on the surface of planar microlens [J]. Acta Photonica Sinica, 1992, 21(1): 79~84
 朱传贵,刘德森,薛鸣球等. 平面微透镜的表面凸起现象分析 [J]. 光子学报, 1992, 21(1): 79~84
- 12 M. Oikawa, H. Nemoto, K. Hamanaka *et al.*. High numerical aperture planar microlens with swelled structure [J]. *Appl. Opt.*, 1990, **29**(28): 4077~4080
- 13 Qin Yali, Mao Peifa, Wang Jiazhi *et al.*. Research and development of planar integrated microlens arrays [J]. J. Zhejiang University of Technolog, 2001, 29(1): 51~53
 覃亚丽,毛培法,王家诒等.平面集成微透镜阵列的研制[J]. 浙江工业大学学报, 2001, 29(1): 51~53
- 14 Grant Griffiths, Peter J. Khan. Analysis of planar optical waveguide fabrication by ion exchange in glass [J]. IEEE J. Quantum Electron., 1981, 17(4): 529~535

栏目编辑:韩 峰